## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Bin Zhou, ${ }^{\text {a }}$ Wen-Yuan Gao, ${ }^{\text {a }}$ Tie-Jun Zhang ${ }^{\text {b }}$ * and Jia-Xin Zhang ${ }^{\text {c }}$

${ }^{\text {a }}$ College of Pharmaceuticals and Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China, ${ }^{\mathbf{b}}$ Department of Modernization of Chinese Traditional Medicine, Tinajin Institute of Pharmaceutical Research, Tinajin 300193, People's Republic of China, and 'Huai'an College of Information Technology, Huai'an 223001, People's Republic of China

Correspondence e-mail: tju_zhoubin@163.com

## Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
$R$ factor $=0.053$
$w R$ factor $=0.145$
Data-to-parameter ratio $=16.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

## tert-Butyl 3-phenylcarbazate

In the molecule of the title compound, $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$, the amide unit has the usual trans conformation. In the crystal structure, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules, forming infinite chains. Acylhydrazines are an important synthon used to construct hydrogen-bond networks.

## Comment

We report here the molecular structure (Fig. 1) of the title compound, (I). The coordination of atom N 2 is almost planar, while that of N1 is markedly pyramidal, similar to that reported by Wardell et al. (2006). Atom N1 is at a distance of 0.101 (6) $\AA$ from the plane of the phenyl ring, and thus it is nearly coplanar. The four atoms of the carbazate, $\mathrm{N} 2 / \mathrm{C} 7 / \mathrm{O} 1 /$ O 2 , are essentially coplanar. The $\mathrm{C} 1-\mathrm{N} 1[1.399(4)-\AA]$ and $\mathrm{C} 7-\mathrm{N} 2[1.340(3)-\AA$ ] bond lengths are within the ranges of normal $\mathrm{C}-\mathrm{N}$ single (1.47-1.50- $\AA$ ) and double ( $1.34-1.38-\AA$ ) bonds (Allen et al., 1987), which indicates that atoms N1 and N 2 are conjugated with the aryl plane and carbonyl group, respectively. Based on the relative torsion angles, the amide unit has the usual trans-planar conformation (Table 1).

(I)

As can be seen from the packing diagram (Fig. 2), intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) link the molecules, forming infinite chains which may be effective in the stabilization of the crystal structure. Dipole-dipole and van der Waals interactions are also effective in the molecular packing.

## Experimental

The title compound was prepared from di-tert-butyl dicarbonate and phenylhydrazine by the method of Kisseljova et al. (2006) (yield $90 \%$, m.p. 362-363 K). Suitable single crystals were grown from an ethyl acetate- $n$-hexane (1:3) solution.

## Crystal data

$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=208.26$
Monoclinic, $P 2_{b} / c$
$a=10.236(4) \AA$
$b=13.662(6) \AA$
$c=8.628(3) \AA$
$\beta=101.814(7){ }^{\circ} \AA^{3}$
$V=1180.9(8) \AA^{3}$

$$
Z=4
$$

$$
\begin{aligned}
& 2=4 \\
& D_{x}=1.171 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

$$
\text { Mo } K \alpha \text { radiation }
$$

$$
\mu=0.08 \mathrm{~mm}^{-1}
$$

$T=294$ (2) K
Block, colourless
$0.20 \times 0.14 \times 0.10 \mathrm{~mm}$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.984, T_{\text {max }}=0.992$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.145$
$S=1.03$
2400 reflections
146 parameters
H atoms treated by a mixture of independent and constrained refinement

6439 measured reflections 2400 independent reflections 1102 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.068$
$\theta_{\text {max }}=26.5^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0463 P)^{2}\right. \\
& +0.1989 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.004 \\
& \Delta \rho_{\text {max }}=0.15 \mathrm{e}^{-3} \\
& \Delta \rho_{\text {min }}=-0.14 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.011 (2)

Table 1
Selected geometric parameters ( $\left(\AA,{ }^{\circ}\right)$.

| $\mathrm{O} 1-\mathrm{C} 7$ | $1.204(3)$ | $\mathrm{N} 1-\mathrm{N} 2$ | $1.389(3)$ |
| :--- | :---: | :--- | :--- |
| $\mathrm{O} 2-\mathrm{C} 7$ | $1.343(3)$ | $\mathrm{N} 1-\mathrm{C} 1$ | $1.399(4)$ |
| $\mathrm{O} 2-\mathrm{C} 8$ | $1.471(3)$ | $\mathrm{N} 2-\mathrm{C} 7$ | $1.340(3)$ |
|  |  |  |  |
| $\mathrm{N} 2-\mathrm{N} 1-\mathrm{C} 1$ | $118.4(3)$ | $\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 2$ | $125.5(2)$ |
| $\mathrm{C} 7-\mathrm{N} 2-\mathrm{N} 1$ | $122.2(2)$ | $\mathrm{N} 2-\mathrm{C} 7-\mathrm{O} 2$ | $108.9(2)$ |
|  |  |  |  |
| $\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 7$ | $94.2(3)$ | $\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 7-\mathrm{O} 2$ | $173.2(3)$ |
| $\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 7-\mathrm{O} 1$ | $-6.2(5)$ |  |  |

Table 2
Hydrogen-bond geometry ( $\AA^{\circ}{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{2}{ }^{\mathrm{i}}$ | $0.85(3)$ | $2.05(3)$ | $2.900(3)$ | $171(3)$ |
| $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{ii}}$ | $0.85(3)$ | $2.40(3)$ | $3.237(3)$ | $167(3)$ |

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.
The N -bound H atoms were refined freely, with both $\mathrm{N}-\mathrm{H}=$ 0.85 (3) $\AA$, while the other H atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$ for aromatic and methyl H atoms, respectively, and were constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C}, \mathrm{N})$, where $x=1.5$ for methyl and $x=1.2$ for all other H atoms.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:


Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level.


Figure 2
A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Kisseljova, K., Tsubrik, O., Sillard, R., Maeeorg, S. \& Maeeorg, U. (2006). Org. Lett. 1, 43-45.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wardell, S. M. S. V., de Souza, M. V. N., Wardell, J. L., Low, J. N. \& Glidewell, C. (2006). Acta Cryst. E62, o2589-o2591.

